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A quasistatic frictional contact formulation is derived from a dynamic contact problem using 

time-discretized approximation, for which a compliant interface model of the contact surface is 

assumed. An a posteriori error estimator is developed by a Lagrangian formulation which is 

recast into a set of local problems with equilibrated normal stress. Hence, local errors are 

calculated by solving these local element-wise problems, and can be used to obtain optimal 

meshes through an adaptive hp-finite element method based on a priori and a posteriori error 

estimates. The theory is applied to representative test problems of frictional contact, and 

numerical simulation results are given to support the theoretical results. 
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-Fini te  Element Method 

I .  I n t r o d u c t i o n  

In the mechanics of solids and structures, one 

always encounters situations in which one body is 

in contact with another. Nevertheless, in most 

analyses of solids and structures, the effects of 

contact are often ignored due to inherent mathe- 

matical and numerical difficulties in modeling 

contact. A major difficulty in treating contacl 

problems is that the contact region or boundary is 

unknown a priori, which renders contact prob- 

lems nonlinear. Also, in real engineering applica- 

tions, contact is inherently combined with friction 

and a proper characterization of frictional effects 

on the motion of bodies in contact constitutes a 

highly nonlinear and much more complex prob- 

lem. 

Early studies of the phenomenon of friction 

date back to Leonardo da Vinci in the fifteenth 

century, Amontons in the seventeenth century and 

Coulomb in the eighteenth century, leading to the 

publication of Cou lomb ' s l aws in  1781 (Dawson, 

1978). The study of contact problems as part of 
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the theory of elasticity was started by Hertz in 

1882 (Johnson, 1984). The first mathematical 

formulation of contact problems in elasticity was 

contributed by Signorini in 1933. In the last 

decade, new mathematical theories of frictional 

contact emerged with the introductiion of new 

frictional models. Early studies of frictional con- 

tact involved the regularization of Coulomb's law 

or the use of nonclassical friction laws. Later, 

some nonclassical friction laws for contact prob- 

lems involving elastic bodies were inltroduced by 

Oden and Martins (1985). Klarbing, Mikelic and 

Shillor (1988, 1989) formulated a variational 

inequality for more general contact conditions 

and proposed incremental and rate models which 

provide reasonable models for developing effec- 

tive finite element approximations of elastic con- 

tact problems. 

In the numerical modeling of both frictional 

and frictionless contact problems, a variety of 

questions arise. These involve such issues as what 

are the appropriate locations of grid points near 

the contact boundary, how singularitiies that may 

exist near contact boundaries can be resolved, and 

what choices of shape functions can best capture 

contact stresses. These types of numerical issues 
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can be addressed using adaptive finite element 

methods. A key component of any adaptive proc- 

ess is a reliable algorithm for a priori and a 

posteriori error estimations. A posteriori error 

estimates for finite element approximations of 

linear elliptic problems have been popularized by 

Babuska and Rheinboldt and their colleagues 

(1978), and Kelly, Gago, and Zienkiewicz (1983) 

presented methods of deriving error estimates for 

second order problems. Recently, a new a poster- 

iori error estimation theory was developed by 

Ainsworth and Lee (1993), which provided for 

the construction of element wise a posteriori 

error estimates by a special dual formulation in 

which continuity conditions at interfaces are treat- 

ed as constraints. 

In the present study, we consider incremental 

formulations of quasistatic contact problems with 

friction, introduce a regularization of the fric- 

tional functional, and apply the error estimators 

to these classes of problems. Also, numerical 

examples are given to support the theoretical 

results. 

2. Formulat ions  of  Quas is tat ic  

Contact  Problems 

2.1 Quasistatic contact problems 
We use the standard notation of Sobolev spaces 

and begin by considering the motion of a linearly 

elastic body which is assumed to be very slow in 

comparison with the speed of elastic waves in the 

body. The body is unilaterally supported by a 

rigid foundation and occupies a domain 22 in N N 

( N - 2 ,  3) which has a Lipschitz boundary F,  

and is subjected to body forces f throughout 12 

and surface traction I applied to a portion FF of 

F.  The body is fixed along a portion/ 'D of/1, and 

Fc denotes a candidate contact surface. The 

actual surface on which the body comes in contact 

with the foundation is not known in advance but 

is contained in Fc. The initial gap between the 

body and the foundation is defined by a function 

2-(.~>0). Attention is confined to infinitesimal 

deformations of the body, and it is assumed that 

the body has a linearly elastic behavior character- 

ized by the generalized Hooke's law, 

5is(u)-Eimu~,z in 22, l<_i,j,k,l<_N (1) 

where u is a displacement field in 12, Eijk~ are 

the usual elasticity coefficients. We denote by n 

the unit outward normal vector along the bound- 

ary F and by a~ and dr  the normal stress and 

tangential stress vectors on the boundary. Similar- 

ly, the displacement u oil the boundary / '  is 

decomposed into normal and tangential compo- 

nents un and ur,  respectively. The frictional 

contact behavior on the contact surface Fc is 

assumed to be governed by the compliant surface 

model studied by Oden and Martins (1985): 

normal stress 

~,z(u) = cn(un-g)'~" (2) 

tangential stress 

when un <;5 

ar (u) - 0  

when un > g  

I~(u)l<c,~(u,, g)':', u~=O 

or 

BA>0 such that t i t =  ,4 dr(U) (3) 

where c,, m,,  cr and mr  are material interface 

parameters corresponding to the Coulomb's fric- 

tion coefficient and ( �9 ) + denotes the positive part 

of the argument. Assuming sufficient smoothness 

for all the functions and data introduced in the 

above relations, and equating the penetration 

approach to the normal distance between compli- 

ant surfaces, a ( u , - g ) + ,  we arrive at the fol- 

lowing system of equations and inequalities gov- 

erning the displacement field u, for a time interval 

(0, T) :  

Linear momentum equations 

pii~+cr~j,j+f,. 0 in 22• (0, T ) ,  

l < _ i , j < N  (4) 

Boundary conditions 

u~ 0 on Fv• (0, T) ,  l<_i<_N 
~n:--t, .  on FFX (0, T) ,  l < i , j < _ N  (5) 

Contact boundary conditions (2, 3) 

Initial conditions 

u ( x , O ) - u o ( x )  in 12 



A Local Error Estimator Using Finite Element Residual and Duality 33 

u ( x , O ) : u o ( x )  in .Q (6) 

where p is the mass density of the material of 

which the body is composed. 

Now, in order to establish a weak fbrm of this 

problem, we introduce the space V of admissible 

displacements defined by 

V={v~[H~( f2 ) ] '~ lv=O on Fo} 

Note that homogeneous boundary conditions 

are assumed on I'~ for simplicity, but this is not 

essential in our theory. 

The weak form of the dynamic frictional con- 

tact problem is 

Find u( l )  : (0, T)  ~ V such that 

(pit ,  v -  ti} + a(u, v -  gt) +j,,(u, v - u )  

+ j r ( u , v ) - j r ( u ,  t i ) > F ( v - t i )  Vv~.=-V (7) 

with the initial conditions 

u(x,O)=uo(x), u ( x ,O ) =  Uo(X) 

where 

(u. vS=- f u,v~dx 

a ( u, v) = s163 

j~(u,  v) ~ f .  c,~(s) (u~--g)~"l;,,,:ls 

f ,  Y ~n7 j~(u, v)= cCT(S)(U.--g)+ Iv~l&" 

F ( v ) ~ s  f t,vid.," 

Now consider cases in which the inertia term is 

small enough to be neglected; for example, when 

the acceleration of the whole body is very small in 

comparison with other components in the var- 

iational inequality. Then the inertia term may be 

omitted and the following quasistatic formulation 

is obtained: 

Find u ( t ) ~  V such that 

a(u,  v ft) -~ j,,(u, v--  ti) +jz '(u,  v) 
- jr(u,  g~) ~ F ( v  it) V v ~  V (8) 

with the initial condition u(x ,O):=u0(x) .  

2.2 Incremental model of the quasistatic 
problem 

Let the time interval [0, T]  be divided into n 

successive intervals (ll, /l+l) for /'=0,-..,,~/-- I and 

0 : - 1 0 < " - < l , , - T .  A standard finite difference 

approximation of displacements and velocities is 

introduced according to 

u(t~)=u(l~)+(~(u( l ,+0 u ( ~ ) ) , 0 < 0 - < 1  

e/(to) =~--t (u(t ,<) - u(t,)) 

where 

to=ll+ (}(till-- ll) 
At  -- &+l - tl 

Here we assume equilibrium at 1--Io and intro- 

duce new notations as follows: 

u ' = u ( l , )  

w =- 0 ( U z+l - -  U ~) 

v = O . A t ,  v 
g r o g _  Zt ~ 

j~(u, V) =--~ C~(S) (u , , -g ' )~"v~ds  
c 

j~(u, v )~  f , c~(s ) (u , ,  g')'~'lvrlds 

l , '(v> tol  ,ds 

- a(u', v) 

Then we obtain: 

Find w ~ V  such that 

a(w, v---w) ;,i(w, v - w )  ~ i~(w, v) 
-j~(w, w) >F~(v-w)  Vv~- V (9) 

Here u t is known and treated as data at each 

time. Thus, at each time step, we ,obtain a time 

independent problem which is similar to static 

contact problems. 

2.3 A minimization problem 
When fiiction is ignored, the variational in- 

equality (9) reduces to the following nonlinear 

equation: 

Find w@- V such that 

a(w,v )+j~(w ,v )  F~(v) V v ~ V  (10) 

In order to formulate a minimization problem, 

we define a potential functional J/, such that 

]~(v)~ m, ,+l  c.(s)(l,,, g~)~'"~'& 

which is convex and differentiable. Then a minim- 

ization problem which is equivalent to (10) can 

be formulated as follows: 

Find w ~  V such that 
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where 

T~(w)  = inf T~(v) 
z ) ~ v  

1 + 
T ~ ( v ) - - ~ a ( v , v )  J . ( v ) - F ~ ( v )  (11) 

3. Finite Element  Approximation 

Suppose that the domain 22 is exactly covered 

by finite elements 22K, i.e., 

~ -  U22~ 
K 

Let v h c  V be the finite element space defined 

by 

Vh=[  Vh~(22) ]N ~ V 

where V hp is the space of piecewise continuous 

polynomials. The discrete problems correspond- 

ing to (10) and (11) are characterized as follows: 

Find w h ~  V ~' such that 

a ( w  ~, v ~) +/~(w~ ~, v ~) 
= F ' ( v  h) V v h ~ V  h (12) 

and 

Find w h ~  V h such that 

T ; ( w h ) :  inf T ; ( v  h) (13) 
O h ~  V ~' 

4. An a P o s t e r i o r i  Error Est imation 

4.1 An upper bound of  the error 

First, we apply Ainsworth Lee a posteriori 
error estimators to those nonlinear equations 

which characterize contact problems without fric- 

tion. Later, validity of the error estimators will be 

discussed in the presence of friction. Attention is 

confined to two-dimensional problems for sim- 

plicity. 

Let w and w h be the solutions of (10) and 

(12), respectively. The finite element approxima- 

tion error e and the energy norm are defined as 

e ~  V, e - - w - w  h 

II vll~ = a,/aW,, v) 
The difl'erence of the potential functions Z e 

(w) and T Z ( w  h) can be reduced to the follow- 

ing: 

T ~ ( w ) -  T ~ ( w  h) 

_ 1 a(e,  e) +J~(w)  - J ~ ( w  h) - j ~ ( w ,  w) 
2 

+ j~ (w ,  w h) (14) 

From the convexity of ]~ and j~, we have 

I[e[[~=a(e,e)<-- 2 { T ~ ( w ) - T ~ ( w h ) }  
= - 2 i n f {  T~(v) - T~(wh) } (15) 

v ~  v 

which states that the energy norm of error is 

bounded by the difference of the potential func- 

tionals. 

4.2 L o c a l i z a t i o n  of  error e s t imator  

Now it is necessary to localize the global upper 

bound. First, local solution spaces VK and ~oc 
are defined in a finite element 22K as 

V~{v~[H'(22,d]21v-O on 322KNF~} 

and 

VLoc--H VK 
K 

so that V c  ~oc. With these local spaces VK, the 

nonlinear terms are restricted to a finite element 

22K as follows: 

(UI~, VK) = f~ Eij~uKi.jvK/,tdx ag  

v 1 f 
Y,zx( K) ~ ;~r Jos~,nr~ (2n(8) (vK"-gz)'~"+lds 

1 + T~(v~) ~ a ~ ( v ~ , v ~ )  ].i~(v,a F~(vK) 

Also, an averaging function a}~](s) is 

introduced on the interelement boundaries FKL 

shared by elements s and ,QL such as (see Lee 

and Oden, 1994) 

a < ~ ( s ) + a ~ ( s )  1, i 1,2, s~FKL 

where i denotes a component in /-direction. In 

terms of this averaging function, the averaged 

normal stress and the jump on Fm~ are defined as 

averaged normal stress: 

( (~ij ( W h) ]/IKj>l Ot~ ~(Ki)L ( 8 ) (~ij ( W h) nKj 

+ a~.~ (s) a,j (w~) n,~ 

jump: 

114.~{vKi vLi, if K > L  
vLi-  vK~, if K <  L 
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where ne is an outward unit normal vector of 

c~.Qu and w,~ is a restriction of w ~ to _Q,~. 

We next extend T ~ to the space V~oc and 

consider the difference of functionals, 

I ~ ( v ) -  T ~ ( v ) -  T~(w~), v ~  V~o~ 

Then I~(v) can be recast into the following: 

U ( v ) = ~ { T / ( v ) -  TA(w ~) 

f ~  (a,>. ( w ~) n,<s)~-. ( v , -  w?) ds} 

+ 22 ns) ~ .ds 

where n denotes the unit normal vector defined 

on each interelement edge which points the ele- 

ment with larger element number. 

By penalizing the interelement jump [Iv--w~l[ 

by a Lagrange multiplier It, a Lagrange func- 

tional L ~ is introduced such that 

L~(v, p) =-I'(v) - i t ( H v -  w~ll) 
Now, using standard functional analysis, it is 

not difficult to obtain the following inequalities: 

~ - t l e l l~_>/ ' (w)=  inf supL~(v, it) 
t l~ gtoc ,gEM 

2 s u p  inf L~(v, lt) 
, a ~ M  V ~  Vloc 

> inf LZ(v, fi), Vfi~=_M (17) 
1)~2 Vtoc 

where M denotes the space of Lagrange multi- 

pliers. 

With a special choice of a Lagrange multiplier 

fi, an upper bound of the error is given as fol- 

lows: 

I l e l l ~ - 2 ~  inf { T~Z(v~) - T~(w h) 
K VK~ VK 

f ~ o  (a~( w h) nK~)~-~v~,.d~ 

+ f ~ a s  (a~(w~)n~)~_~u,~ds} (18) 

where fi is chosen as 

.a<llv- w ll) 
=22 

Hence, in order to obtain an upper bound of 

the approximation error, we only have to solve 

the following element wise problem: 

Find w ~  VK such that Vv~:~  V~ 

aK(w~, v~) +j~(w~, v~)-F~(v~) 

-- f ~ n ( a ~ s ( w ~ )  nr~)~-~vmds=O (20) 

This boundary value problem characterizes the 

situation in which the original boundary condi- 

tion is applied to any of the element boundaries 

and the equilibrated normal stress is exerted on 

the interelement boundaries. 

Once a solution w~ is obtained for (20), an 

upper bound to the error can be calculated 

according to: 

where 

tlell~ -2~,{  TZ(w~) - ~ d ( w ~ ) }  (21)  
K 

Or, using (14), 

"T~(t~) - "~(w h) 

1 2a~(wK---w h, ~ - w " )  

+Jk(KzK) J}(wh)--j~K(iO~, O&--w h) 

we obtain 

Irelr~.~aK(w~- w", Cv~- w h) 
-2[Jk(w~)  ]~(w ~) 
-j~K (wK, ~b~ - w~') ] (22) 

Moreover, we can tbrmulate discretized prob- 

lems by introducing the local solution space 
V h a s :  

v 2 - [  v~(s2~)]  N ~ v,, 

Then the discrete problem corresponding to 

(20) is characterized as follows: 

[:ind w ~  V~ such that V V,~-C V,~ 

aK(w~, v~)+j/,K(w~, v,~)--l~(v~) 

- f~\a~(ai~(wh) nKj)l , v~ ,ds=0  (23) 

or equivalently, 

Find w ~  V2 such that 

T ~ ( w ~ ) =  inf T~(v h) (24) 
vK~ v], ~ 

Here note that since w~ is expected to be close 

to WK. it is reasonable to use better approxima- 

tions for ~ than those for u, ~. Eiither the p- or 

the h method can be used to get better approxi- 

mations for this purpose. 

T/(vK) : 7~(vK) 

f .12K\ c~D / h~b \ff~i ( W , nl<~)l-.VmdS 
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4.3 Contact problems with friction 
With friction the minimization problem cannot 

be formulated, because potential functions are not 

available as in the frictionless case. From the 

mathematical point of view, the frictional contact 

problems are path (history) dependent while 

frictionless problems are not. Nevertheless we can 

still use the Ainsworth-Lee error estimators 

without the frictional boundary term, and include 

the frictional terms only in the residual calcula- 

tion procedure. The error estimator is expected to 

still capture the errors which arise from the inside 

of the domain and normal contact boundary, as is 

validated by numerical experiments in the follow- 

ing section. 

5. Numerical  Experiments 

Methods and numerical techniques for resolv- 

ing the local problems for ~ is well explained in 

(Lee and Oden, 1994). Here example problems 

are solved and numerical results are given to 

support the theory. We consider a two-dimen- 

sional plane strain problem involving an infinite- 

ly long linearly elastic cylinder in contact with a 

rigid flat foundation_ From the symmetry of the 

problem, onIy half of the body is considered and 

the configuration of the problem is shown in Fig. 

1. Young's modulus and Poisson's ratio are taken 

as E - - 1 . 4 •  10:~(10Skg/cm/sec2)and 9=0.25.  

Contact parameters are taken as follows: on--1.0 

x 103 ( 10~kg/cm:~/seC), c~ --0.3 )~ l0 a ( 105kg/cm3/ 

sect), m , ; - - m r = 2 .  Body forces are neglected, and 

two different types of uniform pressure are 

applied on the upper boundary of the body as 

shown in Fig. 2. The time step is taken as I (sec) 

and the range of time is fiom 0 to 10 (see). The 

initial conditions used are the following: the 

cylinder rests on the rigid fiat foundation without 

any external force, and it is in an equilibrium 

position as w(x ,  0 ) = 0  and w(x ,  O) 0 

The problem is solved using quasistatic theory, 

and a finite element analysis of the problems is 

performed using quadrilateral elements with 

shape functions of uniform order /~ 2. The 

regularization parameter is taken to be 10 ~ (cm), 

and the Newton-Raphson method is used to solve 

,Y 

/ 
i 7 "~ 

/ Elastic Body 
/ 

D 

Rigid FoundaUon 

Fig. 1 Configuration of the problem: a cylindrical 
elastic body resting on a rigid fiat founda- 

tion. 

'~ t ] load type 2 

3O 

n 20 

E 

ill 

10 

0 2 4 6 8 10 

Time t 

Fig, 2 Time history of load type 1 and 2. 

the resulting nonlinear problems at each time 

step. Since exact solutions are not available, the 

quality of the error estimates is judged by calcu- 

lating the error based on the reference solutions, 

presumed to be very accurate, which are obtained 

by the same finite elements with element order p 

--8. The errors are estimated with and without 

normal stress (flux) equilibration, which means 

that the equilibration parameter, a'~, is taken as 

0.5. 

In order to compare the estimated errors with 

the exact errors, the global and local effectivity 
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indices are def ined as the ra t ios  of  the es t imated 

global  and  local er rors  to the exact g lobal  and  

local errors ,  respectively. These  effectivity indices 

are to testify the qual i ty  of  the er ror  es t imators ,  

and  the values of  indices close to one  reveal tha t  

Table 1 

37 

the  es t imated er rors  are close to the  exact errors,  

which  means  tha t  the e r ror  es t imators  are accu- 

rate. 

Tab les  I and  2 show the g lobal  errors  and  

effectivity indices in each t ime step which  are 

Global  errors and effectivity indices along time steps (load type 1). 

Time 

step 
True 

0.1379361 

0,2194921 

0,2614171 

0.3093635 

0.4030606 

0.3187154 

0.2743482 

Error 

With 

equilibrium 

0.1841161 

0.2817038 

0.3257678 

0.4032462 

0.5433496 

0.4131368 

0.347112I 

Without  

equilibrium 

0.1828515 

0.2879182 

0.3575906 

0.4400417 

0.5720164 

0.4549692 

0,3782150 

Effectivity 

index 

i With 

equili-  

bration 

1.33 

1.28 

1.25 

1.30 

1.35 

1.30 

1.27 

-I 1.22 

Without 

equili 

bration 

1.33 

1.31 

1,37 

1.42 

1. 42 

1,43 

1.38 

8 0.2348655 0.2860148 0.3050285 1.30 

9 i 0.1531524 0.1781268 0.1968649 1.16 1.29 

10 0 0 0 0.31 0.31 

Table 2 Global errors and effectivity indices ;tlong time steps (load type 2). 

Time 

step 
True 

Error 

With 

equilibrium 

0.2459342 l 0.1934476 

2 0,2568225 0.3174395 

3 0.3105912 0.4095945 

Without 

equilibrium 

0.1828515 

Effectivity 

index 

With 

equili- 

bration 

1,27 

Without 

equili 

bration 

1.38 

0.3502144 1.24 1.36 

0.4437929 1.32 1.43 

4 0.3684494 0.4911055 0,5282425 1.33 1.43 

5 0.4096880 0.5465053 0.5791954 1.33 1.41 

6 0.3773838 0.4928263 

7 0.3222945 0.4202081 

0.5386519 1.31 1.43 

04625744 1.30 1.44 

8 0.2731543 0,3434459 0.3760057 [.26 1.38 

9 0.2123726 0.2520066 0.2815549 1.19 1.33 

10 0 0.32 0.32 
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ca lcula ted  by two different  methods .  F r o m  the 

effectivity indices, the es t imated errors  are obser-  

ved to be close to the true errors  in every t ime 

step, and  the equ i l ib ra t ed  er rors  are c loser  to the 

t rue errors  t han  the  averaged ones. Since no 

external  force is present  after t ime step 10, a zero 

so lu t ion  is ob ta ined .  Hence  the effectivity indices 

are expected to be inaccurate ,  as indica ted  in 

Tab les  I and  2. 

A typical  t ime step is chosen  at / = 3 ,  and  Figs. 

3, 4 and  5 show the d i s t r ibu t ion  of  local t rue and  

es t imated errors  with and  wi thou t  equ i l i b ra t ion  

of  n o r m a l  stress for load type 1. Also,  d i s t r ibu t ion  

of  local effectivity indices are shown  in Figs. 6 

and  7. As stated earl ier ,  the theory  is restricted to 

global  results and  fr ict ionless  cases. But, in Figs. 

3 - -7 ,  the local results are observed to be also as 

close to the  t rue errors  as the g lobal  results. In 

o ther  words,  the er ror  es t imat ion  is more  accura te  

with equ i l i b r a t i on  in local e lementwise  errors  as 

well as g lobal  errors.  Figs. 8 - - 1 2  show the results 

for load type 2 which  lead to the same conclus ion .  

m :/ 

Fig. 3 Distribution of local true errors at t = 3  (load 
type 1 ). 

6. Conclusions 

In this paper ,  a quas is ta t ic  f r ic t ional  contac t  

fo rmula t ion  is der ived from a d y n ami c  contac t  

p rob lem,  and  an  a poster ior i  e r ror  es t imator  is 

deve loped  by a L a g r a n g i a n  fo rmula t ion  and  

loca l iza t ion  of  m i n i mi za t i o n  problems.  The  t h e -  

Fig.  5 

Fig.  6 

i , , , l  : e {  

Distribution of local errors estimated without 
equilibration at t 3 (load type 1). 

Distribution of local effectivity indices esti- 
mated with equilibration at t = 3  (load type 
I). 

Fig.  4 

s . �9 

Distribution of local errors estimated with 
equilibration at t 3 (load type I). 

F ig .  7 

, ,  . . . . .  i , o l  > 

Distribution of local effectivity indices esti- 
mated without equilibration at ! 3 (load 
type 1 ). 
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. . . .  , , , , ,  , , ,  . . . . .  �9 

Fig. 8 Distribution oflocal true errors at t=3  (load 
type 2). 

Fig. 9 Distribution of local errors estir~ated with 
equilibration at {:--3 (load type 2), 

o 

Pig, 10 Distribution of local errors estimated without 
equilibration at 1=3 (load type 2). 

ory is verified by numerical experiments, the 

results of which lead to the following conclusions: 

(I) The error estimator is based on the global 

upper bound of the minimization problems which 

holds for only global errors, but the local errors 

are also accurately captured by the error 

estimators. 

(2) Even thot~gh the error estimator is devel- 

Fig. 11 Distribution of local effectivity indices esti- 
mated with equilibration at l '=3 (load type 
2), 

Fig'. t2 Distribution o1 local effectiviity indices esti- 
mated without equilibration at l = 3  (load 
type 2). 

oped only for frictionless contact problems, the 

effective indices show that the error estimator can 

accurately capture the errors even in frictional 

c a s e s .  

(3) The equilibrated errors are generally 

closer to the true errors than those obtained by 

simple averaging, and this is found to be true for 

both the general distribution of errors over the 

mesh and the local effectivity indices. 
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